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A numerical procedure is presented for the solution of the steady-state NavierStokes 
equations for the flow of a viscous, incompressible fluid between two rotating cylinders, 
with or without flow through the cylinders in the radial direction. The velocity calculated 
by this method agrees with experimental measurements, and the iterative process may 
be successfully accelerated to speed convergence in some cases and decelerated to 
prevent divergence in others. 

INTRODUCTION 

While attempting to determine the forces that cause and maintain such atmos- 
pheric phenomena as tornadoes and dust whirls, some investigators (e.g., Long [Z]) 
have examined vortices confined in circular cylinders. In one such study, Pao [2] 
calculated the ffow of a viscous,incompressibIe &rid confined in a cylinder where the 
top plate was rotating with constant angular velocity, the bottom plate was held 
stationary, and the cylinder was either rotating with the top plate or held fixed. 

The use of a confined vortex was also an integral part of a conceptual nuclear 
reactor design investigated by Kerrebrock and Keyes [3] and Kerrebrock and 
Meghreblian [4]. The vortex, generated by tangentially injecting a gas of low 
molecular weight into a cylinder and exhausting it through a hole in one of the end 
walls, was used to maintain an annular cloud of fissioning material. In an experi- 
mental study related to this application, Kidd [S] examined the flow generated by 
passing a fluid radially inward through a pair of rotating, concentric, porous 
cylinders. One end plate of the cylinders was held stationary to simulate the condi- 
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Cons near the end plate of the vortex reactor, while both of the concentric cyhnders 
and the other end plate rotated with a constant angular velocity. 

Zn the past, such theoretical approaches as boundary layer a~prox~rnat~Q~s~ 
momentum integral techniques and similarity transformations have been used to 
describe the interaction of a vortex with a stationary surface (see Lewe~~e~ [ri], 
~c~widers~i and Lugt [7], King [a], and Kidd and Fart% [P]>. However, the availa- 
bility of large, high-speed, digital computers and the greater ~~dersta~d~~g of the 
use of numerical methods for solving nonlinear partial differential equations have 
made it practical to investigate flow problems without making the a~~r~x~~a~~~~s 
inherent in these techniques. 

Ln this paper, a numerical method is presented that was used to study two %JW 

problems related to tornadoes and the reactor design discussed above. Consider a 
pair of concentric circular cylinders that are rotating with the same constant angular 
velocity 92. The top end wall of the cylinder system is held st,at~o~ar~~ while the 
other end wall also rotates with angular velocity ti. In one of the problems the 
steady-state Aow of an incompressible fluid contained in the cylinder system, wit 
no flow across any portion of the boundary, is studied. Pn the other problem, there 
is uniform flow of the fluid radially inward through the cyhnder bou~da~~e 

In the remainder of this paper, the governing equations with boundary con 
appropriate to the two problems are presented and no~d~me~sio~a~ equations in 
terms of the classical stream function and vorticity are derived. A rmmerical proce- 
dure fsr solving finite difference approximations of the latter equations is ~r~v~~~d~ 
and the results of numerical experiments carried out with this met hod are exhibite 
and discussed. 

It is assumed that the flow patterns in the two problems are axisym 
that the effect due to forces external to the system (such as the ~rav~~at~o~a~ force) 
are negligible. Then, in terms of the radial, tangential a axial components (w, 21, 
and w, respectively) of the fluid velocity and the pressure the equations of motion 
(in cylindrical coordinates) that result from conservation of mass and ~o~e~~~~ 
are 

uu, - f r* j- wu, = 
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where the subscripts denote partial differentiation, p and v are the constant mass 
density and kinematic viscosity of the fluid, and the function 7 is defined by 

r(r, z) = ru(r, z). (5) 

For the problem with no fluid flow through the boundary of the system, the 
boundary conditions are 

z&, z) = w(_T, 2) = 0, r(_y, z) = yYi2, (6) 
u(F, 2) = w(F, 2) = 0, r(i, 2) = PQ, (7) 

for 0 < z < S, and 
u(r, 0) = w(r, 0) = 0, .Qr, 0) = r%l, (8) 

u(r, 2) = r(r, 5) = w(r, Z) = 0, (9) 

for z < r < ?, where -r and i; are the radii of the inner and outer cylinders and 5 is 
the height of the cylinder system. When there is flow through the boundary of the 
system, the conditions (6)-(g) at the boundary are valid, except that 

U(f, z) = vR’/_r, 6’) 
u(7, z) = vR’/7, (7’) 

for 0 < z < Z, where R’ is the radial Reynolds number. 
The pressure may be eliminated from (2) and (4) by differentiating (2) with 

respect to z and (4) with respect to r and by subtracting the results, so that the 
motion can be described by three equations in terms of U, I’, and w. These equations 
may be nondimensionalized by dividing the independent variables by a 
characteristic length L, which we take to be F, and by dividing the velocity terms 
by LG. In terms of these nondimensional quantities, we define the stream function 
#(r, z> by 

.E$, w = - f z& ) (10) 

and the vorticity <(r, z) by 
C(r, z) = u, - w, . (11) 

It is readily verified that $, as defined in (lo), identically satisfies the nondimen- 
sional formulation of (1) and that (2)-(4) can be written as 

AI’ - f T, = R i+ &rT - +- #&), (12) 
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and the tangential Reynolds number R is defined by 

For the details of the derivation see Farris et al. [IO]. 
In terms of these variables, (6)-(9) can be written as 

for 0 < z < Z, and 

for y < Y < P, where the y, ?, and 2 used in (b)-(9) have been nondimeusiona~~e~ 
by the factor 1/L. When there is a flow through the cylinder walls, (15)-(18) are 
valid, except that 

qJ(_y, 2) = rzuO, .z>, t/J(F) 2) = i%.d(F, z), (I 5” i’ 

for 0 < z d 5, and 
*(r, 5) = rZu(r, Z), (18’) 

for y e I <F, 

NUMERICAL M-0 

As a result of the axial symmetry in both problems, only the flow in the rectam- 
gular region D = ((Y, z) / r < r < ? and 0 < z < Z> needed to be considered. 8n 
D a network of uniformly spaced grid lines was constructed and, at each interior 
mesh point (the intersection of two grid lines), the derivatives that appear in 
(12)-(14) were approximated by central differences. The resulting di~er~~~~ 
equations contain a truncation error of order h2, where h is the grid size (see Smit 
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Ill]). During the iterative process the difference equations were used to obtain 
temporary values for I’, 5, and z,4 as follows: 

(19) 

(20) 

(21) 

where dependent variables without superscripts are assumed to have the super- 
script (n). An asterisk denotes a temporary value, say A& , for the new iterate 
~‘.I:l”j”’ at the point (ri , zj) = (-r + (i - l)h, (j - 1)h). The new iterate was obtained 
from this temporary value and the old iterate /.liI”j’ by the relaxation procedure 

For the two problems, the boundary values used for (19) and (21) were immedia- 
tely available from (15)-(18), (15’) and (18’). The boundary values for (20) were 
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obtained from the following difference approximations for the derivatives that 
appear in (15)-(18): 

for 1 < j < N, and 

for 2 < i < M - 1, where M and N are the numbers of grid lines in the I- an 
z-directions and were chosen so that 

z P--Y 
h=3T-T=--=-s M-l 

The iteration procedure consisted of making sweeps of the interior mesh pomts 
(from left to right, then from bottom to top) for each of the dependent varia 
turn, in the order I’, 5, and $. This was continued until 

where Dn is the set of interior mesh points. 
For each different case, specified by the ordered pair (R, R’), an initial guess was 

the results for some convergent case (R, , and 

RESULTS OF NUMERICAL ~XPE~~~T~ 

This namerical procedure was used to calculate “‘solutions” of the ~r~b~~rn.s 
specified by (12)-(14) with boundary values given by (I§)-(18) (15’) and (18’) for 
R in the range 0.25 to 300 when R' = 0, and for R in the range 121 to 266, when R 
was in the range 0 to -13.7 (where the minus sign denotes flow in the negative 
r-direction). In an effort to insure that the values obtained from the iterative 

58r/4/2-8* 
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procedure did in fact satisfy (12)-(14), the residual (the amount by which the 
difference equation fails to be satisfied) was calculated at each point of Dn for I’, 5, 
and 16 once (26) had been satisfied for E = 0.001. That the difference equations 
were satisfied is shown by the fact that not only were the residuals small (usually 
five orders of magnitude smaller than the value of the dependent variable at a 
point), but they were extremely sensitive to changes in the dependent variables, 
i.e., small changes in the dependent variables resulted in relatively large changes in 
the residuals. 

Once solutions of the difference equations had been obtained, the values of the 
velocity components were calculated from difference equations analogous to (3, 
(lo), and (11). In experimental studies performed by Kidd [5] for the problem with 
radial flow, measurements were made of the ratio of the radial to tangential 
velocity component at points near the stationary end wall, and of the tangential 
velocity component at points far from that wall. The corresponding numerical 
results were in good agreement with these measurements. 

For the problem without radial flow, insufficient experimental results were 
obtained for a thorough comparison with the numerical results. With regard to the 
overall flow pattern, however, both the experimental and numerical results indicate 
that, far from the end wall, a potential vortex (the tangential velocity component is 
inversely proportional to the radial distance and the radial and axial velocity 
components vanish) is approximated when there is radial flow and that nearly solid 
body rotation exists when there is no radial flow. The details of the comparison 
between the calculated and experimental velocity components and of the presenta- 
tion and analysis of the flow patterns in these two problems are given by Farris 
et al. [IO]. 

The numerical procedure described in the previous section is basically that 
proposed by Pao [2] except that he did not use relaxation, i.e., he took wn = 1 for 
A = I’, 6, and z,$ and his convergence criterion involved only the stream function. 
Although there is little general theory for the use of relaxation in the solution of 
nonlinear partial differential equations, relaxation has been employed in certain 
flow problems (e.g., Tejeira [12]) to accelerate convergence for some Reynolds 
numbers and to obtain convergence for others at which divergence would otherwise 
occur. 

In an attempt to determine what relation, if any, exists between the relaxation 
vector w = (wy , wC , c+) and the tangential Reynolds number R, and to determine 
whether, for given R, changes in w greatly affect the number of iterations required 
for convergence, several numerical experiments were performed for R in the range 
70 to 200 when there is no radial flow, i.e., R’ = 0. 

For each R, the vector o that resulted in the fewest iterations required for the 
convergence of the solution is displayed in Table I. Also, the number of iterations 
required so that each dependent variable satisfies a criterion similar to (26) is given. 
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TABLE I 

R w Iteration 

r 6 4 r 5 4 
70 1.4 0.8 1.4 50 625 350 
80 1.4 0.8 1.4 50 700 a0 
90 1.4 0.1 1.3 50 950 100 

100 1.4 0.7 1.3 50 700 109 
150 I.3 0.2 1.2 150 1075 350 
200 1.1 0.1 1.0 150 2000 3% 

In each of these cases, the initial guess used was the solution for the p~~~e~i~~ 
case and the initial guess for the case R = 70 was the scdutioa at R = 60. As 
increases, the relaxation factors must be decreased in order at the number of 
iterations required for convergence be minimized. The vorticity is the most sensitive 
variable with respect to changes in R. 

In Tables II and III, the results obtained by varying w for the cases 
= 200 are exhibited. In the cases where the i iteration had not converged, an 

exaltation of the quantity 

at e 
had 

50 iterations indicated that convergence would likely have 
ciently many iterations been allowed to take place. 

* h 

1.45 
1.4 
1.3 
1.2 
1.1 
1.0 
1.0 
0.9 
0.8 

$ 
1.45 
1.4 
1.3 
1.2 
1.1 
1.3 
1.4 
1.4 
1.4 

r 
50 
50 
50 
50 
50 
50 
55 
50 
50 

6 

1 OOCP 
10ooa 
1000” 
1000” 
1000” 

900 
800 
I 

a The dependent variable had not converged in the indicated number of iterations. 
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TABLE III 
R=200 

w Iteration 

r 1; * r 5 # 
1.1 0.4 1.0 3.50 2000" 1050 
1.1 0.2 1.0 150 2000" 600 
1.1 0.1 1.0 150 2000 350 
1.1 0.09 1.0 1.50 2000" 350 
1.1 0.08 0.9 200 2OOoa 400 

a The dependent variable had not converged in the indicated number of iterations. 

The sensitivity and lack of convergence of the vorticity < are again very much in 
evidence. From a study of these tables, it appears that there is an “optimal” 
relaxation vector, and that w, and wd can be considerably larger than CO< . The 
results provided in Tables II and III are typical of those obtained in similar experi- 
ments for the other values of R in Table I (see Farris et al. [IO]). 

The quality of the initial guess required for convergence is a matter of consid- 
erable practical importance, since the interesting cases in many flow problems are 
characterized by fairly high Reynolds numbers. Although a comprehensive study 
of the required quality was not made, several of the cases in Table I were rerun 
using the solution at an even smaller Reynolds number for the initial guess. For 
each such case, the number of iterations required for convergence was not substan- 
tially increased. This was probably due to the fact that the overall flow pattern 
underwent no drastic alteration over the range of R that was studied (see Farris 
et al. [lo]). 

For the problem with radial flow, some cases and the corresponding relaxation 
vectors that led to convergence are given in Table IV. In general, many more itera- 
tions at considerably smaller relaxation factors were required for convergence, 
and the iterative process was extremely sensitive to the quality of the initial guess. 
When the relaxation factors were somewhat larger than those at which convergence 
eventually occurred, divergence often resulted within a few iterations. The sensitiv- 
ity to initial guess seemed reasonable since the flow pattern changes rapidly with 
changes in R'. 

In view of the fast convergence of r’ and # relative to 5, it seemed that once r 
and ZJ converged, i.e., individually satisfied a criterion similar to (26), the iterative 
process could be stopped and that the 5 calculated directly from a difference 
analogue of (14) might satisfy (26). Were this the case, substantial reductions in 
computer time could have been achieved. However, this was tried in several cases 
and the 5 that resulted was in some cases an improvement over the values obtained 



R R’ 

121 0 to -4.0 
121 -6.0 
121 -8.0 
121 -9.66 
164 -9.99 
168 -9.76 
176.1 - 10.23 
221.5 - IQ.23 
230 -13.7 
260 -9.83 

02 
- 

F 5 4 

1.0 0.1 9.0 
0.5 0.04 
0.3 0.02 
0.1 0.01 0.1 
0.15 G.005 .15 
0.15 0.805 .15 
0.15 0.005 .I5 
0.12 BO4 0.12 
0.05 .OOl 0.05 
8.12 0.004 0.12 

from the iterative process, but in every case it fell ~o~s~derab~y short of convergence,. 
There were some cases in which no improvement was obtained. It is possi 
the overall iterative procedure could be accelerated by ~e~~~di~a~~y using this 
method to calculate Z; directly. 

SUMMARY AND COMMENTS 

A numerical procedure has been developed for the solution of the ~avie~-~t~ 
equations for the steady flow of a viscous, incompressible fluid between two rotating 
cylinders, with or without flow through the cylinders in the radial direction. The 
velocity components calculated by this method agree with ex~er~enta~ measure- 
ments, and the iterative process may be successfully accelerated to speed eon- 
vergence in some cases and decelerated to prevent divergence in others. It a~~e~~~ 
that there is an upper limit for the practical appiication of the me 
form for the problem with radial flow, because of the degree to which the ~~~~e~~~ 
must be underrelaxed to prevent divergence and the resulting rather large 
of computer time required for convergence. For the problem without r 
it also appears that there is a practical upper limit, but that t 
are well below it. 

Since the velocity components are calculated from the differen 
(5) and (IO) in terms of I’ and Z/J only, it might seem that the time 
Gonvergence for 5 once r and +!J had converged was wasted. This 
have been the case if the velocity components had been the only variables of ~~~e~~s~ 
and if there were no desire for the results for some case involving 
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beyond a given case (R, R’). However, the latter was not true and, in order to 
obtain a good initial guess for later cases, a well-converged 5 was essential, espe- 
cially for the problem with radial flow. 

An alteration of this procedure, which may result in an extension of its 
applicability to cases involving Reynolds numbers beyond those now possible, 
consists of using noncentral difference approximations to the first order partial 
derivatives that appear in (12)-(14) rather than the central differences now 
employed. In one- and two-dimensional analogues of the Navier-Stokes equations, 
Burns [13] and Boughner [II] showed that the replacement of central by noncentral 
difference approximations for first order derivatives resulted in substantially 
increased rates of convergence for sufficiently large Reynolds numbers. Elowever, 
when such a substitution was made in the case R = 200, R’ = 0, much slower 
convergence resulted. 

Two other methods that should be considered in an attack on this and similar 
problems are the generalized Newton’s method employed by Greenspan [15,/6], 
which solves the equations in terms of the stream function and vorticity, and the 
method proposed by Chorin 117,181, which solves the equations in terms of velocity 
components. 
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